CB. a) Derive an expression for electric field intensity at any point on axis of uniformly charged ring. b) When does charged circular ring behave as point charge?

Ans. a) Consider a circular ring of radius a. charge on ring is Q. Let there be a point P at distance x from centre of ring.

Step1: Field at P due to small charge dQ. (Shown at top of ring).

Step2: Horizontal component of dE will add up.

i.e
$$E_x = \int dE \cdot \cos\theta.$$

$$= \int \frac{dQ}{4\pi \epsilon_0 r^2} \cdot \frac{x}{r}$$

$$= \frac{1}{4\pi \epsilon_0} \cdot \frac{x}{r^2} \int dQ$$

$$E_x = \frac{1}{4\pi \epsilon_0} \cdot \frac{x}{r^3}.Q$$

$$E_x = \frac{Q}{4.\pi.\epsilon_0} \cdot \frac{x}{r^3}$$

$$E_{\chi} = \frac{Q}{4.\pi.\epsilon_0} \cdot \frac{x}{(x^2 + a^2)^{3/2}}$$

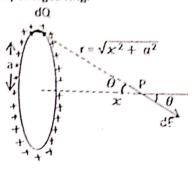
Discussion.

1. If P is at centre,
$$x = 0$$

$$E_x = \frac{Q}{4\pi\epsilon_0} \cdot \frac{0}{r^3} = 0$$

$$E_x = 0$$
 at centre.

b) When point P is far away from origin (x>>a).


$$E_{x} \simeq \frac{Q}{4\pi\epsilon_{0}} \cdot \frac{x}{(x^{2})^{3/2}}$$

$$=\frac{Q}{4\pi\epsilon_0}.\frac{x}{x^3}.$$

$$E_{x} = \frac{Q}{4.\pi\epsilon_{0}} \cdot \frac{1}{x^{2}}$$

t is same as that of Electric field due to "point charge."

io, When point P is far away from origin, ring behaves as a point charge:

On The Axis Of A Charged Ring